Getting Started¶
Git Branches¶
The Nautobot project follows a branching model based on Git-flow. As such, there are three persistent git branches:
main
- Serves as a snapshot of the current stable releasedevelop
- All bug fixes and minor feature development on the upcoming stable release occurs herenext
- All major new feature development for the next feature release occurs here.
You will always base pull requests off of either the develop
branch, for fixes and minor features, or next
, if you're working on a feature targeted for a later release. Never target fix or feature pull requests into the main
branch, which receives merges only from the develop
branch and only for new stable releases of Nautobot.
Forking the Repo¶
When developing Nautobot, you'll be working on your own fork, so your first step will be to fork the official GitHub repository. You will then clone your GitHub fork locally for development.
Note
It is highly recommended that you use SSH with GitHub. If you haven't already, make sure that you setup Git and add an SSH key to your GitHub account before proceeding.
In this guide, SSH will be used to interact with Git.
$ git clone git@github.com:yourusername/nautobot.git
Cloning into 'nautobot'...
remote: Enumerating objects: 231, done.
remote: Counting objects: 100% (231/231), done.
remote: Compressing objects: 100% (147/147), done.
remote: Total 56705 (delta 134), reused 145 (delta 84), pack-reused 56474
Receiving objects: 100% (56705/56705), 27.96 MiB | 34.92 MiB/s, done.
Resolving deltas: 100% (44177/44177), done.
$ ls nautobot/
CHANGELOG.md README.md docs nautobot.code-workspace site
CONTRIBUTING.md contrib manage.py poetry.lock tasks.py
LICENSE.txt development mkdocs.yml pyproject.toml upgrade.sh
NOTICE dist nautobot scripts
About Remote Repos¶
Git refers to remote repositories as remotes. When you make your initial clone of your fork, Git defaults to naming this remote origin
. Throughout this documentation, the following remote names will be used:
origin
- The default remote name used to refer to your fork of Nautobotupstream
- The main remote used to refer to the official Nautobot repository
Setting up your Remotes¶
Remote repos are managed using the git remote
command.
Upon cloning Nautobot for the first time, you will have only a single remote:
$ git remote -v
origin git@github.com:yourusername/nautobot.git (fetch)
origin git@github.com:yourusername/nautobot.git (push)
Add the official Nautobot repo as a the upstream
remote:
View your remotes again to confirm you've got both origin
pointing to your fork and upstream
pointing to the official repo:
$ git remote -v
origin git@github.com:yourusername/nautobot.git (fetch)
origin git@github.com:yourusername/nautobot.git (push)
upstream git@github.com:nautobot/nautobot.git (fetch)
upstream git@github.com:nautobot/nautobot.git (push)
You're now ready to proceed to the next steps.
Hint
You will always push changes to origin
(your fork) and pull changes from upstream
(official repo).
Creating a Branch¶
Before you make any changes, always create a new branch. Again, for bug fixes and minor features, you'll want to create your branches from the develop
branch, while for major new features, you'll branch from next
instead.
Before you ever create a new branch, always checkout the appropriate branch and make sure you you've got the latest changes from upstream
:
Warning
If you do not do this, you run the risk of having merge conflicts in your branch, and that's never fun to deal with. Trust us on this one.
Now that you've got the latest upstream changes, create your branch. It's convention to always prefix your branch name with your GitHub username or your initials, and suffix it with the issue number if appropriate, separated by hyphens. For example:
Enabling Pre-Commit Hooks¶
Nautobot ships with a Git pre-commit hook script that automatically checks for style compliance and missing database migrations prior to committing changes. This helps avoid erroneous commits that result in CI test failures.
Note
This pre-commit hook currently only supports the Python Virtual Environment Workflow.
You are encouraged to enable it by creating a link to scripts/git-hooks/pre-commit
:
Setting up your Development Environment¶
Getting started with Nautobot development is pretty straightforward, and should feel very familiar to anyone with Django development experience. We can recommend either a Docker Compose workflow (if you don't want to install dependencies such as PostgreSQL and Redis directly onto your system) or a Python virtual environment workflow.
Windows Development¶
Local development on Windows Subsystem for Linux (WSL) is not currently supported. When developing locally on Windows, we recommend using a virtual machine running an officially supported operating system.
Docker Compose Workflow¶
This workflow uses Docker and Docker Compose and assumes that you have them installed.
For the Docker Compose workflow, Nautobot uses Invoke as a replacement for Make. Invoke was chosen because it is less arcane than make. Instead of a Makefile
, Invoke reads the tasks.py
in the project root.
Note
Although the Docker Compose workflow uses containers, it is important to note that the containers are running the local repository code on your machine. Changes you make to your local code will be picked up and executed by the containers.
Install Invoke¶
Because it is used to execute all common Docker workflow tasks, Invoke must be installed for your user environment. On most systems, if you're installing without root/superuser permissions, the default will install into your local user environment.
If you run into issues, you may also deliberately tell pip3
to install into your user environment by adding the --user
flag:
Please see the official documentation on Pip user installs for more information.
List Invoke Tasks¶
Now that you have an invoke
command, list the tasks defined in tasks.py
:
$ invoke --list
Available tasks:
black Check Python code style with Black.
build Build Nautobot docker image.
build-and-check-docs Build docs for use within Nautobot.
buildx Build Nautobot docker image using the experimental buildx docker functionality (multi-arch
capablility).
check-migrations Check for missing migrations.
check-schema Render the REST API schema and check for problems.
cli Launch a bash shell inside the running Nautobot (or other) Docker container.
createsuperuser Create a new Nautobot superuser account (default: "admin"), will prompt for password.
debug Start Nautobot and its dependencies in debug mode.
destroy Destroy all containers and volumes.
docker-push Tags and pushes docker images to the appropriate repos, intended for release use only.
dumpdata Dump data from database to db_output file.
flake8 Check for PEP8 compliance and other style issues.
hadolint Check Dockerfile for hadolint compliance and other style issues.
integration-test Run Nautobot integration tests.
loaddata Load data from file.
makemigrations Perform makemigrations operation in Django.
markdownlint Lint Markdown files.
migrate Perform migrate operation in Django.
nbshell Launch an interactive nbshell session.
post-upgrade Performs Nautobot common post-upgrade operations using a single entrypoint.
pylint Perform static analysis of Nautobot code.
restart Gracefully restart containers.
start Start Nautobot and its dependencies in detached mode.
stop Stop Nautobot and its dependencies.
tests Run all linters and unit tests.
unittest Run Nautobot unit tests.
unittest-coverage Report on code test coverage as measured by 'invoke unittest'.
vscode Launch Visual Studio Code with the appropriate Environment variables to run in a container.
Using Docker with Invoke¶
A development environment can be easily started up from the root of the project using the following commands:
invoke build
- Builds Nautobot docker imagesinvoke migrate
- Performs database migration operation in Djangoinvoke createsuperuser
- Creates a superuser account for the Nautobot applicationinvoke debug
- Starts Docker containers for Nautobot, PostgreSQL, Redis, Celery, and the RQ worker in debug mode and attaches their output to the terminal in the foreground. You may enter Control-C to stop the containers
Additional useful commands for the development environment:
invoke start [-s servicename]
- Starts Docker containers for Nautobot, PostgreSQL, Redis, Celery, and the RQ worker (or a specific container/service, such asinvoke start -s redis
) to run in the background with debug disabledinvoke cli [-s servicename]
- Launch abash
shell inside the specified service container (if none is specified, defaults to the Nautobot container)invoke stop [-s servicename]
- Stops all containers (or a specific container/service) created byinvoke start
Note
The mkdocs container must be started manually with invoke start -s mkdocs
. It will not start automatically with the
invoke start
or invoke debug
commands.
Tip
To learn about advanced use cases within the Docker Compose workflow, see the Docker Compose Advanced Use Cases page.
Proceed to the Working in your Development Environment section
Python Virtual Environment Workflow¶
This workflow uses Python and Poetry to work with your development environment locally. It requires that you install the required system dependencies on your system yourself.
There are a few things you'll need:
- A Linux system or environment
- A MySQL or PostgreSQL server, which can be installed locally per the documentation
- A Redis server, which can also be installed locally
- A supported version of Python
- A recent version of Poetry
Install Poetry¶
Poetry is a tool for dependency management and packaging in Python. It allows you to declare the libraries your project depends on and it will manage (install/update/remove) them for you. It will also manage virtual environments automatically, and allow for publishing packages to the Python Package Index.
You may install Poetry in your user environment by running:
For detailed installation instructions, please see the official Poetry installation guide.
Install Hadolint¶
Hadolint is a tool used to validate and lint Dockerfiles to ensure we are following best practices. On macOS with Homebrew you can install Hadolint by running:
Install markdownlint-cli¶
markdownlint-cli is a tool used to validate and lint Markdown files, such as Nautobot's documentation, to ensure that they are correctly constructed. On macOS with Homebrew you can install markdownlint-cli by running:
Creating a Python Virtual Environment¶
A Python virtual environment (or virtualenv) is like a container for a set of Python packages. A virtualenv allow you to build environments suited to specific projects without interfering with system packages or other projects. When installed per the documentation, Nautobot uses a virtual environment in production.
For Nautobot development, we have selected Poetry, which will transparently create a virtualenv for you, automatically install all dependencies required for Nautobot to operate, and will also install the nautobot-server
CLI command that you will utilize to interact with Nautobot from here on out.
Bootstrap your virtual environment using poetry install
:
Hint
If you are doing development or testing using MySQL, you may quickly install the mysqlclient
library along with Nautobot by running poetry install --extras mysql
.
This will create automatically create a virtualenv in your home directory, which houses a virtual copy of the Python executable and its related libraries and tooling. When running Nautobot for development, it will be run using the Python binary at found within the virtualenv.
Once created, you may activate the virtual environment using poetry shell
:
$ poetry shell
Spawning shell within /home/example/.cache/pypoetry/virtualenvs/nautobot-Ams_xyDt-py3.8
$ . /home/example/.cache/pypoetry/virtualenvs/nautobot-Ams_xyDt-py3.8/bin/activate
(nautobot-Ams_xyDt-py3.8) $
Notice that the console prompt changes to indicate the active environment. This updates the necessary system environment variables to ensure that any Python scripts are run within the virtual environment.
Observe also that the python
interpreter is bound within the virtualenv:
(nautobot-Ams_xyDt-py3.8) $ which python
/home/example/.cache/pypoetry/virtualenvs/nautobot-Ams_xyDt-py3.8/bin/python
To exit the virtual shell, use exit
:
Working with Poetry¶
Poetry automatically installs your dependencies. However, if you need to install any additional dependencies this can be done with pip
. For example, if you really like using ipython
for development:
(nautobot-Ams_xyDt-py3.8) $ pip3 install ipython
Collecting ipython
Using cached ipython-7.20.0-py3-none-any.whl (784 kB)
...
It may not always be convenient to enter into the virtual shell just to run programs. You may also execute a given command ad hoc within the project's virtual shell by using poetry run
:
Check out the Poetry usage guide for more tips.
Configuring Nautobot¶
Note
Unless otherwise noted, all following commands should be executed inside the virtualenv.
Hint
Use poetry shell
to enter the virtualenv.
Nautobot's configuration file is nautobot_config.py
.
Initializing a Config¶
You may also initialize a new configuration using nautobot-server init
:
You may also specify alternate file locations. Please refer to Configuring Nautobot for how to do that.
Using the Development Config¶
A nautobot_config.py
suitable for development purposes can be found at development/nautobot_config.py
. You may customize the values there or utilize environment variables to override the default values.
If you want to use this file, initialize a config first, then copy this file to the default location Nautobot expects to find its config:
Required Settings¶
A newly created configuration includes sane defaults. If you need to customize them, edit your nautobot_config.py
and update the following settings as required:
ALLOWED_HOSTS
: This can be set to["*"]
for development purposes and must be set ifDEBUG=False
DATABASES
: Database connection parameters, if different from the defaults- Redis settings: Redis configuration requires multiple settings including
CACHEOPS_REDIS
andRQ_QUEUES
. The defaults should be fine for development. DEBUG
: Set toTrue
to enable verbose exception logging and, if installed, the Django debug toolbarEXTRA_INSTALLED_APPS
: Optionally provide a list of extra Django apps/plugins you may desire to use for development
Working in your Development Environment¶
Below are common commands for working your development environment.
Creating a Superuser¶
You'll need to create a administrative superuser account to be able to log into the Nautobot Web UI for the first time. Specifying an email address for the user is not required, but be sure to use a very strong password.
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke createsuperuser |
nautobot-server createsuperuser |
Starting the Development Server¶
Django provides a lightweight HTTP/WSGI server for development use. The development server automatically reloads Python code for each request, as needed. You don’t need to restart the server for code changes to take effect. However, some actions like adding files don’t trigger a restart, so you’ll have to restart the server in these cases.
Danger
DO NOT USE THIS SERVER IN A PRODUCTION SETTING. The development server is for development and testing purposes only. It is neither performant nor secure enough for production use.
You can start the Nautobot development server with the invoke start
command (if using Docker), or the nautobot-server runserver
management command:
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke start |
nautobot-server runserver |
For example:
$ nautobot-server runserver
Performing system checks...
System check identified no issues (0 silenced).
November 18, 2020 - 15:52:31
Django version 3.1, using settings 'nautobot.core.settings'
Starting development server at http://127.0.0.1:8080/
Quit the server with CONTROL-C.
Warning
Do not use poetry run nautobot-server runserver
as it will crash unless you also pass the --noreload
flag, which somewhat defeats the purpose of using the development server. It is recommended to use nautobot-server runserver
from within an active virtualenv (e.g. poetry shell
). This is a known issue with Django and Poetry.
Please see the official Django documentation on runserver
for more information.
You can then log into the development server at localhost:8080
with the superuser you created.
Starting the Interactive Shell¶
Nautobot provides an interactive Python shell that sets up the server environment and gives you direct access to the database models for debugging. Nautobot extends this slightly to automatically import models and other utilities.
Run the Nautobot interactive shell with invoke nbshell
(Docker) or the nautobot-server nbshell
management command:
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke nbshell |
nautobot-server nbshell |
For example:
$ nautobot-server nbshell
### Nautobot interactive shell (localhost)
### Python 3.9.1 | Django 3.1.3 | Nautobot 1.0.0b1
### lsmodels() will show available models. Use help(<model>) for more info.
>>>
Post-upgrade Operations¶
There will be times where you're working with the bleeding edge of Nautobot from the develop
branch or feature branches and will need to pull in database changes or run server operations.
Get into the habit of running nautobot-server post_upgrade
(or invoke post-upgrade
when using Docker) after you pull in a major set of changes from Nautobot, which performs a handful of common operations (such as migrate
) from a single command:
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke post-upgrade |
nautobot-server post_upgrade |
Please see the documentation on the nautobot-server post_upgrade
command for more information.
Reinstalling Nautobot¶
Note
This mostly applies to working with Nautobot in a virtualenv, since Docker containers are typically rebuilt when the code changes.
Sometimes when files are renamed, moved, or deleted and you've been working in the same environment for a while, you can encounter weird behavior. If this happens, don't panic and nuke your environment.
First, use pip3
to explicitly uninstall the Nautobot package from the environment:
$ pip3 uninstall -y nautobot
Found existing installation: nautobot 1.0.0b2
Uninstalling nautobot-1.0.0b2:
Successfully uninstalled nautobot-1.0.0b2
Then try to just have Poetry do the right thing by telling it to install again:
$ poetry install
Installing dependencies from lock file
No dependencies to install or update
Installing the current project: nautobot (1.0.0-beta.2)
Running Tests¶
Throughout the course of development, it's a good idea to occasionally run Nautobot's test suite to catch any potential errors. Tests come in two primary flavors: Unit tests and integration tests.
Unit Tests¶
Unit tests are automated tests written and run to ensure that a section of the Nautobot application (known as the "unit") meets its design and behaves as intended and expected. Most commonly as a developer of or contributor to Nautobot you will be writing unit tests to exercise the code you have written. Unit tests are not meant to test how the application behaves, only the individual blocks of code, therefore use of mock data and phony connections is common in unit test code. As a guiding principle, unit tests should be fast, because they will be executed quite often.
By Nautobot convention, unit tests must be tagged with unit
. The base test case class nautobot.utilities.testing.TestCase
has this tag, therefore any test cases inheriting from that class do not need to be explicitly tagged. All existing view and API test cases in the Nautobot test suite utilities inherit from this class.
Warning
New unit tests must always inherit from nautobot.utilities.testing.TestCase
. Do not use django.test.TestCase
.
Wrong:
Right:
Unit tests are run using the invoke unittest
command (if using the Docker development environment) or the nautobot-server test
command:
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke unittest |
nautobot-server --config=nautobot/core/tests/nautobot_config.py test nautobot |
Info
By default invoke unittest
will start and run the unit tests inside the Docker development container; this ensures that PostgreSQL and Redis servers are available during the test. However, if you have your environment configured such that nautobot-server
can run locally, outside of the Docker environment, you may wish to set the environment variable INVOKE_NAUTOBOT_LOCAL=True
to execute these tests in your local environment instead. See the Invoke configuration for more information.
In cases where you haven't made any changes to the database (which is most of the time), you can append the --keepdb
argument to this command to reuse the test database between runs. This cuts down on the time it takes to run the test suite since the database doesn't have to be rebuilt each time.
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke unittest --keepdb |
nautobot-server --config=nautobot/core/tests/nautobot_config.py test --keepdb nautobot |
Note
Using the --keepdb
argument will raise errors if you've modified any model fields since the previous test run.
Warning
In some cases when tests fail and exit uncleanly it may leave the test database in an inconsistent state. If you encounter errors about missing objects, remove --keepdb
and run the tests again.
Integration Tests¶
Integration tests are automated tests written and run to ensure that the Nautobot application behaves as expected when being used as it would be in practice. By contrast to unit tests, where individual units of code are being tested, integration tests rely upon the server code actually running, and web UI clients or API clients to make real connections to the service to exercise actual workflows, such as navigating to the login page, filling out the username/passwords fields, and clicking the "Log In" button.
Integration testing is much more involved, and builds on top of the foundation laid by unit testing. As a guiding principle, integration tests should be comprehensive, because they are the last mile to asserting that Nautobot does what it is advertised to do. Without integration testing, we have to do it all manually, and that's no fun for anyone!
Running integrations tests requires the use of Docker at this time. They can be directly invoked using nautobot-server test
just as unit tests can, however, a headless Firefox browser provided by Selenium is required. Because Selenium installation and setup is complicated, we have included a configuration for this to work out of the box using Docker.
The Selenium container is running a standalone, headless Firefox "web driver" browser that can be remotely controlled by Nautobot for use in integration testing.
Before running integration tests, the selenium
container must be running. If you are using the Docker Compose workflow, it is automatically started for you. For the Virtual Environment workflow, you must start it manually.
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
(automatic) | invoke start --service selenium |
By Nautobot convention, integration tests must be tagged with integration
. The base test case class nautobot.utilities.testing.integration.SeleniumTestCase
has this tag, therefore any test cases inheriting from that class do not need to be explicitly tagged. All existing integration test cases in the Nautobot test suite utilities inherit from this class.
Warning
New integration tests must always inherit from nautobot.utilities.testing.integration.SeleniumTestCase
and added in the integration
directory in the tests
directory of an inner Nautobot application. Do not use any other base class for integration tests.
We never want to risk running the unit tests and integration tests at the same time. The isolation from each other is critical to a clean and manageable continuous development cycle.
Wrong:
from django.contrib.staticfiles.testing import StaticLiveServerTestCase
class MyIntegrationTestCase(StaticLiveServerTestCase):
...
Right:
from nautobot.utilities.testing.integration import SeleniumTestCase
class MyIntegrationTestCase(SeleniumTestCase):
...
Integration tests are run using the invoke integration-test
command. All integration tests must inherit from nautobot.utilities.testing.integration.SeleniumTestCase
, which itself is tagged with integration
. A custom test runner has been implemented to automatically skip any test case tagged with integration
by default, so normal unit tests run without any concern. To run the integration tests the --tag integration
argument must be passed to nautobot-server test
.
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke integration-test |
nautobot-server --config=nautobot/core/tests/nautobot_config.py test --tag integration nautobot |
Info
The same arguments supported by invoke unittest
are supported by invoke integration-test
. The key difference being the dependency upon the Selenium container, and inclusion of the integration
tag.
Tip
You may also use invoke integration-test
in the Virtual Environment workflow given that the selenium
container is running, and that the INVOKE_NAUTOBOT_LOCAL=True
environment variable has been set.
Customizing Integration Test Executions¶
The following environment variables can be provided when running tests to customize where Nautobot looks for Selenium and where Selenium looks for Nautobot. If using the default setup documented above, there is no need to customize these.
NAUTOBOT_SELENIUM_URL
- The URL used by the Nautobot test runner to remotely control the headless Selenium Firefox node. You can provide your own, but it must be aRemote
WebDriver. (Default:http://localhost:4444/wd/hub
; for Docker:http://selenium:4444/wd/hub
)NAUTOBOT_SELENIUM_HOST
- The hostname used by the Selenium WebDriver to access Nautobot using Firefox. (Default:host.docker.internal
; for Docker:nautobot
)
Verifying the REST API Schema¶
If you make changes to the REST API, you should verify that the REST API OpenAPI schema renders correctly without errors. To verify that there are no errors, you can run the invoke check-schema
command (if using the Docker development environment) or the nautobot-server spectacular
command. In the latter case you should run the command for each supported REST API version that Nautobot provides (e.g. "1.2", "1.3")
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke check-schema |
nautobot-server spectacular --api-version 1.2 --validate --fail-on-warn --file /dev/null |
Verifying Code Style and Static Analysis¶
To enforce best practices around consistent coding style, Nautobot uses Flake8 and Black. Additionally, static analysis of Nautobot code is performed by Pylint. You should run all of these commands and ensure that they pass fully with regard to your code changes before opening a pull request upstream.
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke flake8 |
flake8 |
invoke black |
black |
invoke pylint |
nautobot-server pylint nautobot tasks.py && nautobot-server pylint --recursive development/ examples/ |
Handling Migrations¶
If you're unsure whether a database schema migration is needed based on your changes, you can run the following command:
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke check-migrations |
nautobot-server --config=nautobot/core/tests/nautobot_config.py makemigrations --dry-run --check |
If your branch modifies a Django model (and as a result requires a database schema modification), please be sure to provide a meaningful name to the migration before pushing.
- If you have yet to run
invoke makemigrations
, you can pass in a name for the migration with the-n
option, exampleinvoke makemigrations -n provider_increase_account_length
. - If you have already run
invoke makemigrations
, rename the generated migration files, for example0004_provider_increase_account_length
instead of0004_auto_20211220_2104
.
You’ll also want to run black
against the generated migration file as the autogenerated code doesn’t follow our style guide by default.
When modifying model field attributes, modify the test data in the tests too to reflect these changes and also any forms which refer to the model.
Working on Documentation¶
Some features require documentation updates or new documentation to be written. The documentation files can be found in the docs
directory. To preview these changes locally, you can use mkdocs
.
For substantial changes to the code (including new features, removal of existing features, or significant changes in behavior) you should always make corresponding documentation updates. Nautobot's documentation pipeline includes a custom plugin for mkdocs
that adds a few useful macros for annotating such changes:
+++ 1.4.3
, on a line by itself, is a shorthand for!!! version-added "Added in version 1.4.3"
+/- 1.4.3
, on a line by itself, is a shorthand for!!! version-changed "Changed in version 1.4.3"
--- 1.4.3
, on a line by itself, is a shorthand for!!! version-removed "Removed in version 1.4.3"
These admonitions in turn appear in the rendered documentation as follows:
Added in version 1.4.3
Changed in version 1.4.3
Removed in version 1.4.3
You can also add text to any of these admonitions for further clarity, for example:
+++ 1.4.3
The custom `mkdocs` plugin was added.
will render as:
Added in version 1.4.3
The custom mkdocs
plugin was added.
Caution
While you can use the version-added
/ version-changed
/ version-removed
admonitions directly to add a custom title to a specific admonition, in general, you should use the macros for consistency across the documentation.
Writing Documentation¶
You can preview the documentation using the server built into mkdocs, which should start a web server at http://localhost:8001
.
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke start -s mkdocs |
mkdocs serve |
Documentation is written in Markdown. If you need to add additional pages or sections to the documentation, you can add them to mkdocs.yml
at the root of the repository.
Verifying Documentation¶
Nautobot uses markdownlint-cli
to verify correctness of the documentation. You should run this command and ensure that it passes fully with regard to your documentation changes before opening a pull request upstream.
Docker Compose Workflow | Virtual Environment Workflow |
---|---|
invoke markdownlint |
markdownlint --ignore nautobot/project-static --config .markdownlint.yml nautobot examples *.md |
Submitting Pull Requests¶
Once you're happy with your work and have verified that all tests pass, commit your changes and push it upstream to your fork. Always provide descriptive (but not excessively verbose) commit messages. When working on a specific issue, be sure to reference it.
Once your fork has the new commit, submit a pull request to the Nautobot repo to propose the changes. Be sure to provide a detailed accounting of the changes being made and the reasons for doing so.
Once submitted, a maintainer will review your pull request and either merge it or request changes. If changes are needed, you can make them via new commits to your fork: The pull request will update automatically.
Note
Remember, pull requests are entertained only for accepted issues. If an issue you want to work on hasn't been approved by a maintainer yet, it's best to avoid risking your time and effort on a change that might not be accepted.
Troubleshooting¶
Below are common issues you might encounter in your development environment and how to address them.
FATAL: sorry, too many clients already¶
When using nautobot-server runserver
to do development you might run into a traceback that looks something like this:
Exception Type: OperationalError at /extras/tags/
Exception Value: FATAL: sorry, too many clients already
The runserver
development server is multi-threaded by default, which means that every request is creating its own connection. If you are doing some local testing or development that is resulting in a lot of connections to the database, pass --nothreading
to the runserver command to disable threading: